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Overview

o Introduction
o Data & Method
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Introduction: The Water Vapor Feedback

o Water vapor: the dominant greenhouse gas
> Continuum absorption in IR
> Abundance in atmosphere

o Atmospheric capacity for water vapor increases with increasing
temperature= expect feedback to temperature changes
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Introduction: The Water Vapor Feedback

o Water vapor: the dominant greenhouse gas
> Continuum absorption in IR
> Abundance in atmosphere

o Atmospheric capacity for water vapor increases with increasing
temperature= expect feedback to temperature changes
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» Strength of feedback remains uncertain: estimates range from zero
feedback to constant RHY 170%), or more!
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Introduction: Upper Tropospheric Water Vapor

» Climate models: 35% of total radiative water vapor feedback from
tropical UTH (100-500 mb)

o Cold temperatures in tropical, subtropical UT mean that a small change
can have a large effect
o Conceptual model of tropical upper tropospheric water vapor:
> Source: rapid, highly localized convection

> Sink: slow, large scale descent

Rapid
Centralized
Updrafts
(hours)

Slow
Large-Scale
Descent
(weeks)

o Water vapor distribution largely controlled by distribution of convection
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Introduction: The Role of Convection

o Convection can both hydrate and dehydrate the UT
> Retention and evaporation of droplets moistening

> Vapor condenses onto droplets and precipitatedehydration

> Detrainment into already saturated air, drops fall-euho change

o Current climate models: moisture detrainment controlled by temperature
(altitude) of detraining layer

o Other influences: cloud/precip microphysics, mesoscale downdrafts

» Strength of modeled water vapor feedback highly dependent on
detrainment scheme

Upper Troposphere
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Surface:
Increased Water Vapor
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Introduction: This Study

e Previous studies of convective detrainment in the UT:

> in situ: highly localized observations of short term evolution
> Models: larger scale, longer term but necessarily simplified physics

> Satellites: vertical structure unknown, water vapor observations sparse

o Recent satellite technology provides unprecedented opportunities
> TRMM Precipitation Radar: vertical characterization of convective systems

> AIRS: high vertical resolution global coverage of water vapor into the upper
troposphere

> MODIS: Ice particle sizes at cloud top
o Link these observations by a transport scheme

o Preliminary proof of concept study:

> Detrainment altitude
> Cloud/precip microphysics

> Role of ice in UT water vapor feedback
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Method: Data
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o« TRMM Precipitation Radar
> 2A25 Volumetric Radar Reflectivities

- Echo from water and ice droplets within a volume
- Higher reflectivities = larger droplets or higher concentrations
- Measure of convective intensity

> Reliable for convective systems larger than footprint (4.3 to 5 km)

o AIRS
> Combination of IR and microwave instruments
> Rapid global coveragey 2x per day)
> Horizontal resolution~ 40 km at nadir; vertical resolutior 2 km.

> Slight dry bias in upper troposphere relative to ECMWF
o MODIS

> Cloud ice particle effective radius derived from visible and infrared radiances

> Along track or dailyl® x 1° gridded product
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Method: Finding Convection 1
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o Scan TRMM observations for:
> Deep convection (altitude 10 km)

> TRMM PR Z> 20 dBZ (noise threshold 17 dBZ)

» Calculate potential temperature from NCEP geopotential heights, assume
TRMM altitude = NCEP geopotential height, and interpolate

o Store MODIS mean cloud ice effective radius for associated gridbox
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Method: Integrating Trajectory
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Integration of
Fast Trajectory Model

— —

Day 1] [Day 2] [Day 3][Day 4]

o Fast Trajectory Model - ftraj (M. Schoeberl)
> Five day forward trajectory with timestep = 0.02 days30 minutes)
> UKMO winds (Updated daily at 12 UTC, Z3at x 3.75 lon)

> Diabatic heating rates derived from UKMO using a radiative transfer scheme

o Position stored at each timestep
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Method: Matching Water Vapor
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.. AIRS (on Aqua)

Measures
Water Vapor

o Search for AIRS observations close in space and time to trajectory point

> 1°x 1° box & 30 minutes following trajectory passage

> Include unvalidated overland measurements

o If multiple locations, use mean humidity

o Linearly interpolate from AIRS standard pressure levels
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Results: 300 mb Vapor
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> Many of the maxima are influenced by convective events observed in TRMM

> Consistent with conceptual model - bolsters confidence in the method
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Results: 300 mb Vapor Evolution by Original Altitude
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> Apparent bimodal outflow distribution: 11-12 km, 12.5-14 km

> Outflow altitude looks too high! Likely due to estimationéf
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Results: 300 mb Vapor Evolution by Original Altitude
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July 2003 Day 5 Frobability Density Function
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> Apparent bimodal outflow distribution: 11-12 km, 12.5-14 km
> Outflow altitude looks too high! Likely due to estimationéf

> Higher altitudes may dehydrate more slowly; gap blurs
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Results: 300 mb Vapor Evolution by Original Reflectivity
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Stronger convection seems to detrain drier air
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Results: 300 mb Vapor Evolution by Original Reflectivity s
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> Stronger convection seems to detrain drier air
> Detrainment from higher reflectivities appears to dehydrate more quickly

> Stronger convectioas> higher precip efficiencys- drier air downstream
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Results: 300 mb Vapor Evolution by Original Crystal Size
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Main cluster between 20 and 3&n

Smaller effective radius/lower humidity due to higher detrainment altitude?
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Results: 300 mb Vapor Evolution by Original Crystal Size

20

July 2003 Day 5 Frobability Density Function
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> Main cluster between 20 and 3&n
> Smaller effective radius/lower humidity due to higher detrainment altitude?

> Evaluate gridded vs. along-track
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Summary of Results
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o Preliminary results indicate:
> Detrainment at higher altitudes may dehydrate more slowly

> Bimodal distribution of detrainment - continental vs. maritime convection?
> Larger reflectivities may dehydrate more quickly
« Estimation of potential temperature a major weakness
o Need to evaluate MODIS results, particularly level 3 vs. level 2
o Otherwise, the method and data used in this preliminary study show
significant potential for use in broader and longer term studies
> Develop method to check for cirrus along track (ISCCP DX)
> Investigate regional/seasonal variability over 2 years
> Case studies: bin trajectories by system; match with aircraft studies

> “Train” mixing parameterization along trajectory by tracking individual
trajectories

> Evaluate role of boundary layer aerosols (e.g., biomass burning)
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